Facilitation of murine cardiac L-type Ca(v)1.2 channel is modulated by calmodulin kinase II-dependent phosphorylation of S1512 and S1570.

نویسندگان

  • Anne Blaich
  • Andrea Welling
  • Stefanie Fischer
  • Jörg Werner Wegener
  • Katharina Köstner
  • Franz Hofmann
  • Sven Moosmang
چکیده

Activity-dependent means of altering calcium (Ca(2)(+)) influx are assumed to be of great physiological consequence, although definitive tests of this assumption have only begun to emerge. Facilitation and inactivation offer two opposing, activity-dependent means of altering Ca(2+) influx via cardiac Ca(v)1.2 calcium channels. Voltage- and frequency-dependent facilitation of Ca(v)1.2 has been reported to depend on Calmodulin (CaM) and/or the activity of Calmodulin kinase II (CaMKII). Several sites within the cardiac L-type calcium channel complex have been proposed as the targets of CaMKII. Here, we generated mice with knockin mutations of alpha(1)1.2 S1512 and S1570 phosphorylation sites [sine facilitation (SF) mice]. Homocygote SF mice were viable and reproduced in a Mendelian ratio. Voltage-dependent facilitation in ventricular cardiomyocytes carrying the SF mutation was decreased from 1.58- to 1.18-fold. The CaMKII inhibitor KN-93 reduced facilitation to 1.28 in control cardiomyocytes. SF mutation negatively shifted the voltage-dependent inactivation and slowed recovery from inactivation, thereby making fewer channels available for activation. Telemetric ECG recordings at different heart rates showed that QT time decreased significantly more in SF than in control mice at higher rates. Our results strongly support the notion that CaMKII-dependent phosphorylation of Cav1.2 at S1512 and S1570 mediates Ca(2+) current facilitation in the murine heart.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Proarrhythmic defects in Timothy syndrome require calmodulin kinase II.

BACKGROUND Timothy syndrome (TS) is a disease of excessive cellular Ca(2+) entry and life-threatening arrhythmias caused by a mutation in the primary cardiac L-type Ca(2+) channel (Ca(V)1.2). The TS mutation causes loss of normal voltage-dependent inactivation of Ca(V)1.2 current (I(Ca)). During cellular Ca(2+) overload, the calmodulin-dependent protein kinase II (CaMKII) causes arrhythmias. We...

متن کامل

CaMKII tethers to L-type Ca2+ channels, establishing a local and dedicated integrator of Ca2+ signals for facilitation

Ca2+-dependent facilitation (CDF) of voltage-gated calcium current is a powerful mechanism for up-regulation of Ca2+ influx during repeated membrane depolarization. CDF of L-type Ca2+ channels (Ca(v)1.2) contributes to the positive force-frequency effect in the heart and is believed to involve the activation of Ca2+/calmodulin-dependent kinase II (CaMKII). How CaMKII is activated and what its s...

متن کامل

Regulation of Cav1.2 current: interaction with intracellular molecules.

Ca(V)1.2 (alpha(1c)) is a pore-forming subunit of the voltage-dependent L-type calcium channel and is expressed in many tissues. The beta and alpha(2)/delta subunits are auxiliary subunits that affect the kinetics and the expression of Ca(V)1.2. In addition to the beta and alpha(2)/delta subunits, several molecules have been reported to be involved in the regulation of Ca(V)1.2 current. Calmodu...

متن کامل

L-type calcium channel alpha-subunit and protein kinase inhibitors modulate Rem-mediated regulation of current.

Cardiac voltage-gated L-type Ca channels (Ca(V)) are multiprotein complexes, including accessory subunits such as Ca(V)beta2 that increase current expression. Recently, members of the Rad and Gem/Kir-related family of small GTPases have been shown to decrease current, although the mechanism remains poorly defined. In this study, we evaluated the contribution of the L-type Ca channel alpha-subun...

متن کامل

CaMKII-induced shift in modal gating explains L-type Ca(2+) current facilitation: a modeling study.

Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) plays an important role in L-type Ca(2+) channel (LCC) facilitation: the Ca(2+)-dependent augmentation of Ca(2+) current (I(CaL)) exhibited during rapid repeated depolarization. Multiple mechanisms may underlie facilitation, including an increased rate of recovery from Ca(2+)-dependent inactivation and a shift in modal gating distribution f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 107 22  شماره 

صفحات  -

تاریخ انتشار 2010